Numbers and Reality

Print Friendly, PDF & Email
Area: Math and Logic
Grade Level: Middle School
Topics: materialism, metaphysics, Numbers, Rationalism
Estimated Time Necessary: 1 Class Period

Lesson Plan

Objectives:
Understanding Numbers in the Context of a Human World
a conversation about which things in the room are real, and whether or not any things in the room are ‘more real’ than others. Ask the same of numbers. Are numbers as real as you are?

Have students answer yes or no to the quiz questions (found in the section of discussion questions) on a sheet of paper. Next, have a discussion around some of the discussion questions.

If students answered no to all questions than they would probably agree with the position in metaphysics, that maintains that all real things are real in the same way. This position holds that something is either ‘real’ or it does not exist; there are no gradations of reality.

However, Aristotle argued that philosophers should take the time to argue how things are real, ­­that there are not just two categories of reality and non­reality, but it instead can be described in terms of levels, degrees, and forms.

 

EXPAND TOOL TEXTCOLLAPSE TOOL TEXT

Video

Discussion Questions

  • What does it mean for something to be real? Is it the same or different than the idea of existence?
  • If something is real, must it be something we can see, hear, touch, taste, or smell?
  • Does a certain property make a thing more real than a thing that lacks that property? For example, if numbers are eternal, are numbers more real than humans because humans have limited life spans?
  • Is a thing more real if it has more properties?
  • Does it make a difference if we say that numbers are real or not? What might be the consequences either way?
  • Is a snowflake more real than an atom?
  • Is an atom more real than a subatomic particle?
  • Is a subatomic particle more real than a centaur?
  • Is a centaur more real than a square circle?
This lesson plan was contributed by: David A. White, Philosophy for Kids (Prufrock Press 2001).